
Projecting Effects of Climate Change on River Habitats and Salmonid Fishes:

Integrating Remote Sensing, Genomics, and Demography to Inform Conservation

Brian Hand, Diane Whited, Alisa Wade, Gordon Luikart (PI)

May 2017

Urgent need for climate change vulnerability assessments (CCVAs)

Urgent Need

- Salmonids are "canaries of climate change"
- >300 M \$ spent annually on salmonid conservation
- Prioritization of populations for mangement

Clean, Connected COLD Habitat

Vulnerability to future climate depends on climate exposure, sensitivity & adaptive capacity.

Integrate as key elements of VULNERABILITY

Habitat (Remotely

Sensed)

Genomics

Genetic diversity

Explosion of data Exciting time for conservation

Demographics

Abundance Life History Diversity

Exposure

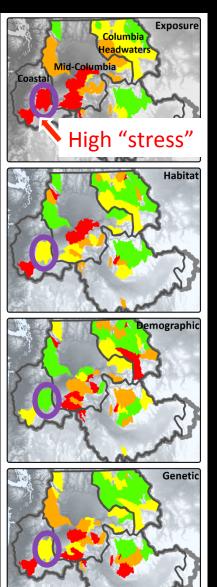
Sensitivity – physiological response

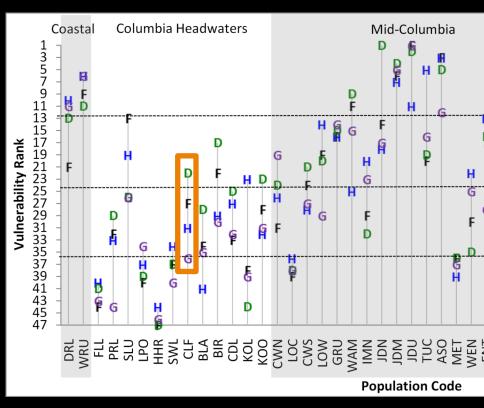
Adaptive Capacity – rapid response

An iterative and integrative project approach

Research and Collaboration
Collaborators in government, state,
tribal and non-profit agencies

Best Practices and
Outreach
Development of best
practices and use cases
partner (end-user)
outreach


Tool Development


End-user driven feedback on needs for data hosting and software tool building

Research and Collaboration: How does habitat, demography, and genetics interact with climate across populations...

Wade et al.
Conservation
Biology 2016

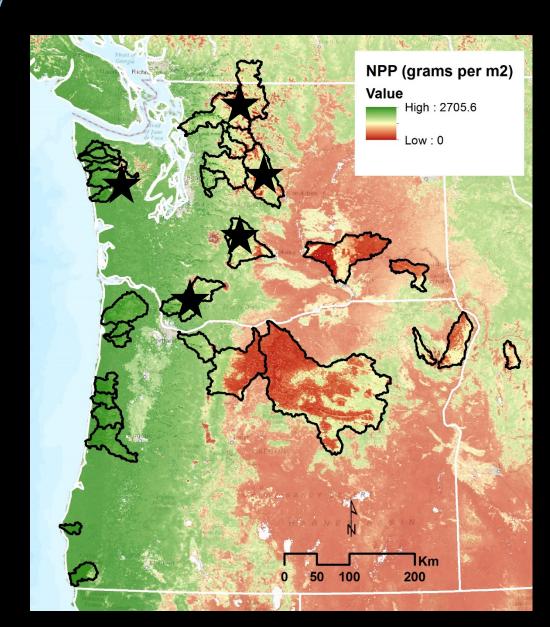
A given population may have very different levels of "stress" depending on stressor type

A given population may be considered "relatively vulnerable" solely on the basis of the variables considered

Population responses of Chinook to environmental conditions and habitat quality/quantity

Nick Gayeski – Wild Fish Conservancy

Demographic (time series)


- Smolt-to-adult returns
- Total adult recruits
- Total adult spawners

Environmental variables

 NPP, human disturbance, temperature, floodplain area

Preliminary results

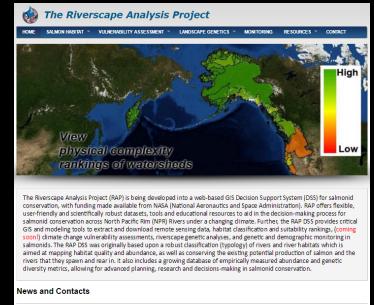
 R = 0.788-0.813 for temperature and flow (annual and summer hydrograph) variables correlated to the estimated annual # of spawners

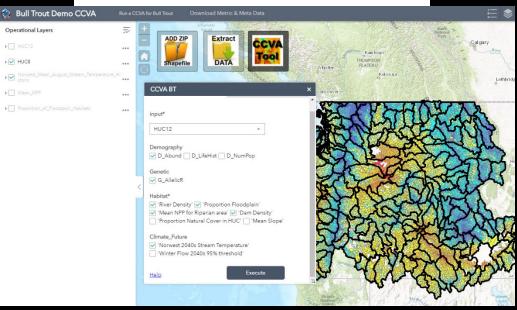
Tool Development: An integrated platform for salmonid conservation

The Riverscape Analysis Project (RAP)

Web-based DSS for salmonid conservation

Data


- Expanded access to remotelysensed climate/habitat data
- Crowd-sourced genetic and demographic data


Tools

- CCVA tools
- Landscape genetic tools

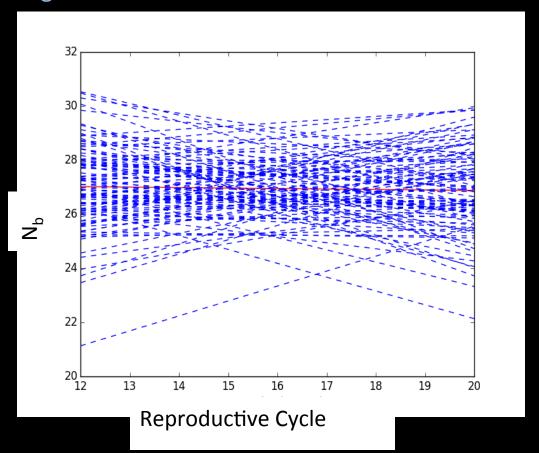
Guidance & Examples

- Best practices
- Worked examples

Increased Data Access to salmonid/aquatic habitat characteristics

Climate Data	RS Mission/ Product	Habitat Quality Data	RS Mission/ Product
Freeze-Thaw Timing	NASA SSM/I, AMSR-E	Drainage Density, Amount, and Sinuosity	NASA SRTM & NHDPlusv2
Open Water	NASA AMSR-E	Productivity	NPP
NorWeST Stream Temperature	NASA Landsat TM & NAIP	Disturbance: NOAA CHAMP, Human Footprint, and NLCD 2011	NASA GRUMP, GPWv3, DMSP, Landsat (Landcover - % disturbance and % forested)
USFS Stream Flow	n/a		
Future predictions Air Temperature, Precipitation, Runoff	NASA NEX-DCP 30	Channel and Valley Slope	NASA SRTM
		Others: Glaciers, Dams, Elevation, Waterbodies	various

Answering the need for monitoring tools (and metrics) related to abundance and genomic diversity: AgeStrucNb


Hand et al. in prep

Nb (number of breeders) provides an annual measure of abundance and genomic diversity, and is driven by environmental factors

Program Features

- Simulate, estimate and visualize trends in Nb
- Test for significant population declines
- Available on Windows,
 Mac and Linux

AgeStrucNb allows users to test for slopes significant from 0.

Best Practices and Outreach: Guidance for improving research and management

Best practices

CCVA Pseudo to Science

Wade et al. 2017 in Biodiversity and Conservation

- Improving rigor in CCVAs
- Accounting for uncertainty
- Methods for validation

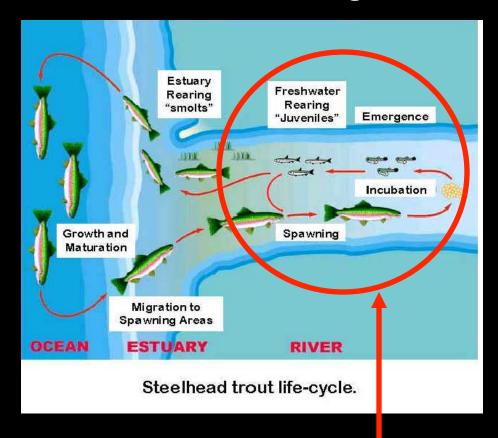
Adaptation management - Vulnerability + Sensitivity dose-response Exposure magnitude or risk of climate change Mitigation and adaptation management

Integration of new technologies

Riverscape management

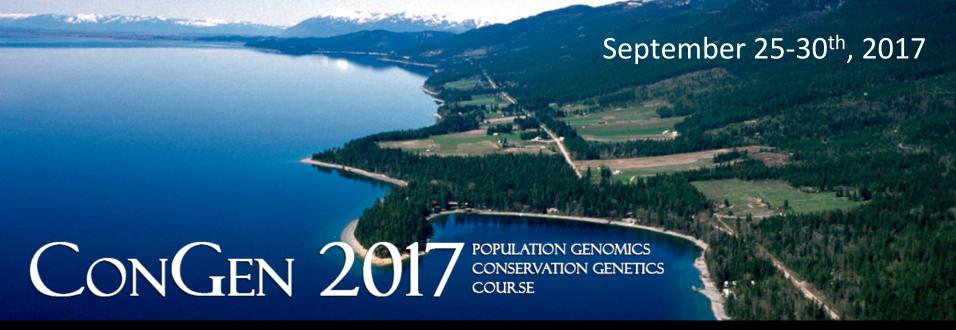
Hand et al. accepted in Frontiers in Ecology and the Environment

- Environmental (e)DNA for detection of rare and invasive species
- Citizen-science initiatives
- Crowdsourcing data


Climate change scenarios of steelhead survival in the Puget Sound

Alisa Wade UM,
Jeff Hard NOAA &
Phil Sandstrom WDFW

- NOAA-developed life cycle model to estimate steelhead abundance
- In current models, habitat capacity is modeled based on "intrinsic potential" of habitat (river slope and width).


Improvements we can provide for the model

- Include remotely-sensed data of habitat quality in intrinsic potential
- Compare scenarios of stream temperature change

Dependent on habitat quality and quantity

Advance training for project collaborators and conservation professionals

"To provide training in conceptual and practical aspects of data analysis to understand the evolutionary and ecological genomics of natural and managed populations. Special sessions on the use of GIS and remote sensing data to identify environmental variables influencing genetic diversity and connectivity."

For more information visit the website: www.umt.edu/sell/cps/congen2017/
Or contact Brian Hand or Gordon Luikart Brian.Hand@umontana.edu
Gordon.Luikart@umontana.edu

Thanks!

Integrating remotely-sensed habitat quality and quantity, demographic, & genomic data

Integrating data, tools, & support (outreach) for salmonid conservation

